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Means of calculating the final temperature of an isoentropic process,
and also the temperature drops, are discussed. It is shown that in cal-
culations of adiabatic processes it is advisable in some cases to use the
proposed adiabatic exponent m.

In calculations of adiabatic processes it is first
necessary, from the initial state and final pressure
of the gas, to determine the final temperature of the
isoentropic process.

If it is assumed that the parameters of a real gas
obey the equation of a reversible adiabatic curve in its
usual form

puk = const, (1)
then [1]
PR (.@) : 2)
p \dv /,
Using the equation of state of a real gas in the form
pu/RT =2, (3)

we obtain the following expression for the adiabatic
exponent,

k=_2 b, (4)

1 -2 ]

The adiabatic exponent k can be calculated for argon,
air, carbon monoxide and dioxide, hydrogen, nitrogen,
and oxygen using tabulated data [2]. The quantity (9z/
/8p)T is found either from the equation of state with z =
=f(p, T), or by numerical differentiation from tables of
compressibility factors.

For a linear dependence of z on pressure, with T =
=const, b =z,

The adiabatic exponent k can be determined from the
velocity of sound in the gas [1].

By simultaneous solution of Eqs. (1) and (3) an ex-
pression is obtained for the final temperature of an
isoentropic process,

(k—1)/k
T,=T, A (_,02_) , (5)
2 \Ph

in which

where (k — 1)/k is the arithmetic mean of the analogous
exponents for the initial and final points.

The use of Eq. (5) has definite disadvantages, since
it is necessary during the calculations to make use of
two tables, namely compressibility factor and adiaba-
tic exponent table.

As is well known [1],

ds = Ct;iT _ (‘1"—) dp. 6)
P

aT

From Eq. (3) and the constancy of the entropy in a
reversible adiabatic process,

da R [0z dp
—_— e — T Z{ —. 7
T Cp L(GT )p * ] 14 @
Further, by introducing the notation
R oz
== (Z]T 8
m ., [(GT),, +2] (8

and taking the quantity m in the interval under consid-
eration from p;, T; to p;, T3 to be constant and equal
to (my + my)/2, we obtain, after integration of Eq. (7),

T, =T, (%); . 9)

For z =1 Egs. (5) and (9) transform into the cor-
responding equations for an ideal gas. -

The value of the partial derivative of the compres-
sibility factor with respect to temperature is easily
determined by numerical differentiation for equidis-
tant points using values of the functions at these points
[3].

For three interpolation points

02, 1
— | =——(y—27_)- 10
(aT),, (=) (10)
For five interpolation points
(%) = —1“ B —z)—(@—2y (11)
P
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For a large number of calculations even the ac-
curacy of Eq. (10) is sufficient. On differentiating at
the beginning or at the end of a table it is necessary
to use the appropriate formulae {3]. Numerical differ-
entiation is preferable to graphical both in the accuracy
achievable and in the convenience of the calculation.

The heat capacity at constant pressure is usually
tabulated. If not ¢, can be found by numerical differen-
tiation of the enthalpy using equations analogous to
(10) and (11).

The figure shows the results of calculations of the
adiabatic exponent.
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The variation of the adiabatic exponents k(a) and m(b) for nitro-
gen with temperature and pressure: 1) for 10 Mn/ m% 2) 7;°3)
4; 4) 1; 5) ideal gas state.

The error in determining the final temperature of
an isoentropic process from Egs. (5) and (9) depends
on the errors in m and k themselves, the error in
averaging them, and in Eq. (5) on the additional errors
in z; and 2,.

An evaluation of the accuracy of the adiabatic ex-
ponents given in [2] showed that if use is made of the
same initial data, i.e., p~v-T data and the thermo-
dynamic properties of an ideal gas, then the errors in
k and m are of the same order. However, the relative
error in the exponent in Eq. (5) is 2 to 4 times greater
than the relative error in the adiabatic exponent k:

A(k—l)/k—]__ 1Ak (12

k E k—1 k

Using the thermodynamic expression for Cp — Cy [4]
we obtain the relationship between m and k:

me ‘/(i_"——l)Rz/cpk . (13)

Entropy tables can also be used to determine the
final temperature of a reversible adiabatic process.

Entropies depend significantly on the pressure; one
of the terms in its analytical formula is In p, so that
very extensive tables are necessary so that a linear
interpolation can be made for intermediate values of
the pressure. Interpolation of a much higher order
requires a greater number of calculations. For ex-
ample, from 1 to 4 Mn/m? on the 400° K isotherm for
nitrogen the interval between the entropy values should
be not less than 0.2 Mn/m?; for the adiabatic exponent
m two values are sufficient in this interval. In addi-
tion, along the isobar the temperature interval between
the entropy values should be less. As a consequence of
the smaller pressure dependence, interpolation for
values of m can be carried out for rounded off values
of the pressure, which is impossible to do with the
entropy.

It is necessary to stress the great simplicity of
finding the adiabatic exponent from tabulated data [2].

Since for many gases relatively small temperature
drops are observed, then i-s or T-s diagrams can-
not in fact give the necessary computational accuracy
provided by the data in [2].

It is possible to illustrate the three methods con-

sidered for determining the final temperature of an
‘isoentropic process by the following examples. For

pt =4 Mn/m?, Ty = 300° K and p; = 10 Mn/m? the value
of Ty for N, found from entropy tables, is 392.2° K,
from the adiabatic exponent m if is 392.1° K, and from
the adiabatic exponent k it is 393.2° K.

The accuracy of Eq. (9) lies within the limits of
accuracy of the entropy tables [2] for pressure ratios
=4. At higher pressure ratios an error begins to
appear owing to the averaging of the exponent in (9).

To attain accurate calculations in this case a cor-
rection to Ty can be introduced, equal to the difference
between the temperature determined from Eq. (9) and
the temperature determined from the entropy s for
the ideal gas state. For example, with p; =1 Mn/m",
T; = 300° K and p; = 10 Mn/m?, T, for nitrogen, found
from the entropy tables is 579.4° K, from the adiaba-
tic exponent m after correction it is 579.4° K, and from
the adiabatic exponent k it is 583.6° K .

The isoentropic temperature drop is found using
the adiabatic exponent k from the expression

(k—=1)/k
Ai=2zRT, —F— [ .’—’2—) —1]. (14)
k—1 P

Although it may appear to be advisable to use this equa-
tion under some conditions [5], its accuracy is gen-
erally inferior to the accuracy of determining the tem-
perature drop from the enthalpy. The use of mean
heat capacities and Joule-Thompson effect data to
calculate the temperature drop [6] is laborious and
camnot provide the accuracy obtained using enthalpy
tables,

Thus for some important applications, such as the
thermodynamic calculation of a gas turbine assembly
closed circuit, it is advisable to use the adiabatic ex-
ponent m for finding the final temperature of an iso-
entropic process in a real gas, and to determine the
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temperature drop from the given initial state and the
found final state using the enthalpy in the usual way.

NOTATION

p is the pressure; v is the specific volume; k is an
adiabatic exponent; R is the gas constant; T is the ab-
solute temperature; z is the compressibility factor;
¢, is the heat capacity at constant pressure; cy is the
heat capacity at constant volume; AT is the interval
between values of the functions z_j, z-y, %, Z1, Zy; M
is an adiabatic exponent; s is the specific entropy; Ai
is the temperature drop; s’ is the specific entropy in
the ideal gas state. The indices 1 and 2 refer to the
start and finish of the isoentropic process, respec-
tively.
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